Exam 1 (February 21, 2007)

Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where requested in order to be considered for partial credit. In problems where you are requested to show your work, no credit will be given unless your work is shown.

Problem 1 (6 pts, no need to show work):
Quotes that might have been ... next to each of the fictitious quotes, put the letter of the person we have studied who would most likely have said it based on your knowledge of what that person is known to have done.

Example
__A_ "Steroids? Isn't that when you have two hemorrhoids?"

"Electricity and magnetism are not separate beasts. They are different faces on one thing, the electromagnetic force."

"Just tell your teacher that time is relative and that you aren't really late for class."

D
"It seems that no matter how stable the table on which I place my microscope, the dust in the drop I am examining wiggles."

"When you push on a wall, the wall pushes back on you.""Cool! Check this out. If I double the distance between these charged spheres, the force between them drops by a factor of four."
I "If you rip apart this toga into smaller and smaller bits, eventually you will encounter the smallest, indestructible part which I call an atom."
A. Barry Bonds
B. Albert Einstein
C. Mao Tse-Tung
D. Robert Brown
E. Charles Coulomb
F. Frederick Douglass
G. Isaac Newton
H. James Joule
I. Democritis
J. Plato
K. Madonna
L. Caligula
M. Johannes Kepler
N. James Maxwell

Problem 2 (6 pts, no need to show work):
If work is done on a body, that body must

$$
\omega=\text { force. Dist }
$$

a. accelerate.
b. be in equilibrium.
c. not exert a force on any other object. hat f credit Answer
d. have no friction force exerted on it.
e. move. full credit Answer,

Problem 3 (8 pts, show your work):

A particle accelerates uniformly from a speed of $30 \mathrm{~m} / \mathrm{s}$ to $40 \mathrm{~m} / \mathrm{s}$ in a period of 5 seconds and thereafter moves at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ for an additional 3 seconds. What is the average speed of the particle over this 8 second period?

Ave Speed in IST 5 seconds is $35 \mathrm{~m} / \mathrm{s}$ dist. Travelled will be $(5)(35)=175 \mathrm{~m}$ In last 3 seconds, dist Travelual is $(40 \mathrm{~m} / \mathrm{s})(3 \mathrm{~s})=120 \mathrm{~m}$ $\begin{aligned} \text { ToTal distance Travelled } & =\text { Dist in } 1 \text { ST } 8 \mathrm{sec}+\text { Dist in last } 3 \mathrm{sec} \\ & =175+120=295 \mathrm{~m}\end{aligned}$

$$
=175+120=295 \mathrm{~m}
$$

Problem 4 (6 pts, no need to show work):
Ave speed in 8 Sec

$$
=\frac{295 \mathrm{M}}{8 \mathrm{~S}}=37^{\mathrm{m} / \mathrm{S}}
$$

You hold a scale in your hand over the edge of a building. A rock sits at rest on the scale. The scale reads 10 pounds. Now you drop the scale/rock. Looking over the edge of the building you see the scale read \qquad as it falls. ... (neglect air resistance)
a. $\quad 10$ pounds
b. $\quad 0$ pounds
c. $\quad 10^{*} g$ pounds
d. Approximately 13 pounds
e. Approximately 7 pounds

Both in free fall -
Normal force of Scale on rock and rock un scale are zero.

Problem 5 (6 pts, no need to show work):
Two point charges of unknown magnitude and sign are a distance d apart. If the electric field strength is zero at a point between them on the line joining them, you can conclude that
a. the charges are equal in magnitude but opposite in sign.
b. the charges are equal in magnitude and have the same sign.
c. the charges are not necessarily equal in magnitude but have opposite sign.
d. the charges are not necessarily equal in magnitude but have the same sign.
e. there is not enough information to say anything specific about the charges.

Full

Problem 6 (6 pts, no need to show work):
hab ard: An electron moves horizontally due north and enters a region of an electric field that is pointed due east. The force on the electron due to the electric field is in what direction? force
 assumptions and logic clearly. Assign a rough error to your estimate. Motivate your reasoning for the error you assign to your estimate.

Assume heart beats 1 time per second
Assume lifetime is 70 years $=70 \mathrm{yr} \times 36 \frac{\mathrm{~d} \text { dur }}{\mathrm{yr}} \times 24 \frac{\mathrm{hr}}{\mathrm{day}} \times \frac{360 \mathrm{~s}}{\mathrm{hr}_{r}}=2.2 \times 10^{9} \mathrm{~s}$
So heat beats 2.2 billion times in one l:fRtine
heartbeat time probably good to 20%
Assume high hautrate times offset by 1000 heart cate tines lifetime probably good to 15 years out $f 70$ or $\sim 20 q_{0}$
So misestimate is probably good to ~ 20 to 40% depending on
how you combine the enos in heat rate and lifetime
Assumptions. Lets qp with 30%
\#heartbeats $=2.2 \pm .6$ billion heart beats

Problem 8 (6 pts, no need to show work):
A ball is thrown up in the air as shown in the sketch. Which of the following statements best describes the motion of the ball?
a. The velocity of the ball is the same at points A, B, C, D and E.
b. The acceleration of the ball is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ at points A, B, D and E and zero at point C.
c. The acceleration of the ball is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ at points A, B, D and E and zero at point C.
d. The velocity of the ball is constant at all points.
e. The velocity of the ball changes continuously during its flight.
a isconstan T

$$
\begin{aligned}
& S \text { canst AN } \\
& \longrightarrow V \text { is a wong chare' }
\end{aligned}
$$

Problem 9 (11 pts):

A football running back accelerates from rest to a full run during a game. Briefly describe this process in terms of Newton's three laws of motion.

Asper Neston'c MsT (ac),
The running back stats at rest and will remain at rest unless acted on by a force. As the running back pushes on the gourd horizontally the ground pushes on him according to Newton's 3:D laid. Because of the unbalanced force of the ground pushing on him, the running back accelerates according to Newton's 2 ND law $F=M a$.

Problem 10 (6 pts, no need to show work):
If you apply the same force to objects with masses M and $4 M$, the acceleration of the mass M is
a. the same as for the mass 4 M .
b four times the acceleration of the mass 4M.
c. one-fourth the acceleration of the mass 4M.
d. twice the acceleration of the mass 4 M .
e. one-half the acceleration of the mass 4 M .

Problem 11 (6 pts, show your work and/or defend your answer):
Two stars are a distance d apart out in space. One star has a mass M. The other star has a mass 4 M . How does the gravitational attraction of the small star for the big star compare to the attraction of the big star for the small star?

0
M

0
4 M
The attraction of M for $4 M$ is the some as that of 4 M for M due to the forces being an action-reaction pair.

Problem 12 (8 pts, show your work):
A pion (an unstable subatomic particle) lives on average $2.6 \times 10^{-8} \mathrm{~s}$ (measured in its own frame of reference) before decaying.
a) If such a particle is moving with respect to the laboratory with a speed of 0.978 c , what (average) lifetime is measured in the laboratory?

$$
\tau^{\prime}=\gamma \tau
$$

Time dilation time shortest in properfisme

$$
\gamma=\frac{1}{\sqrt{1-(.978)^{2}}}=4.8
$$

Properfeane is punticlés frame

$$
\begin{aligned}
\tau_{\text {lab }}= & =(4.8) 2.6 \times 10^{-8} \mathrm{~S} \\
\tau_{\text {lab }} & =1.2 \times 10^{-7} \mathrm{~s}
\end{aligned}
$$

b) How far will the pion travel (on average) in the laboratory?

$$
\begin{aligned}
& \text { distance +naleled }=\left(\tau_{\text {lab }}\right)(0.978 \mathrm{c}) \\
& =\left(1,2 \times 10^{-7} \mathrm{~s}\right)(.978)\left(3 \times 10^{8 \mathrm{~m} / \mathrm{s}}\right)=35 \text { moths }
\end{aligned}
$$

Alfred the Klingon zips past you in a spaceship. He holds a meter stick so that it is oriented parallel to the direction of his motion. You measure the stick to be 0.9 m in length. How fast is Alfred's ship moving relative to you?
means 9 m

$$
\begin{gathered}
1 \mathrm{~m}=(0.9 \mathrm{~m}) \gamma \\
\gamma=1.1
\end{gathered}
$$

length cont.
length longest in proper frame

Problem 14 (8 pts):
 relativistic mechanics (relativity) by many years?

All of our everyday experiences can be explained using Newtonian mechanics. It seems likely, that it arose first out of necessity. Relativistic mechomics simplifies to Nestorian Mechanics in the limit of small speeds (compared to that of light () which is what we typically experience.
Also, relativity requires the infinstructme of basic mechanics as a framework. It would be natural to develop ideas about forces and Motion in the Newtonion worldview before encountering the subtleties leading to relatin. Ty Some might argue that the puzzling results of the Michelson - Morley experiment (constancy of speed of light) were needed For acceptance of relativity.

Some potentially useful formulas

$$
\begin{aligned}
& F=\frac{G m_{1} m_{2}}{r^{2}} \\
& F=\frac{k q_{1} q_{2}}{r^{2}} \\
& F=m a \\
& (\text { distance })=(\text { speed)(time) } \\
& V=\frac{\Delta x}{\Delta t} \\
& a=\frac{\Delta v}{\Delta t}
\end{aligned}
$$

Work $=$ force \times distance
Momentum $=P=m v$
$\Delta x^{\prime}=\gamma \Delta x, \Delta x$ longest in proper frame
$\Delta t^{\prime}=\gamma \Delta t$, Δt Shortest in proper frame

$$
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

